Rate Monotonic Analysis: The Hyperbolic Bound
نویسندگان
چکیده
In this paper, we propose a novel schedulability analysis for verifying the feasibility of large periodic task sets under the rate monotonic algorithm when the exact test cannot be applied on line due to prohibitively long execution times. The proposed test has the same complexity as the original Liu and Layland bound, but it is less pessimistic, thus allowing it to accept task sets that would be rejected using the original approach. The performance of the proposed approach is evaluated with respect to the classical Liu and Layland method and theoretical bounds are derived as a function of n (the number of tasks) and for the limit case of n tending to infinity. The analysis is also extended to include aperiodic servers and blocking times due to concurrency control protocols. Extensive simulations on synthetic tasks sets are presented to compare the effectiveness of the proposed test with respect to the Liu and Layland method and the exact response time analysis.
منابع مشابه
A Hyperbolic Bound for the Rate Monotonic Algorithm
In this paper we propose a novel schedulability analysis for verihing the feasibility of large periodic task sets under the rate monotonic algorithm, when the exact test cannot be applied on line due to prohibitively long execution times. The proposed test has the same complexity as the original Liu and Layland bound but it is less pessimistic, so allowing to accept task sets that would be reje...
متن کاملSchedulability analysis of global Deadline-Monotonic scheduling
The multiprocessor Deadline-Monotonic (DM) scheduling of sporadic task systems is studied. A new sufficient schedulability test is presented and proved correct. It is shown that this test offers non-trivial quantitative guarantees, including a resource augmentation bound.
متن کاملEffects of Non-uniform Suction, Heat Generation/Absorption and Chemical Reaction with Activation Energy on MHD Falkner-Skan Flow of Tangent Hyperbolic Nanofluid over a Stretching/Shrinking Eedge
In the present investigation, the magnetohydrodynamic Falkner-Skan flow of tangent hyperbolic nanofluids over a stretching/shrinking wedge with variable suction, internal heat generation/absorption and chemical reaction with activation energy have been scrutinized. Nanofluid model is composed of “Brownian motion’’ and “Thermophoresis’’. Transformed non-dimensional coupled non-linear equations a...
متن کاملOn utilization bounds for a periodic resource under rate monotonic scheduling
This paper revisits utilization bounds for a periodic resource under the rate monotonic (RM) scheduling algorithm. We show that the existing utilization bound, as presented in [8, 9], is optimistic. We subsequently show that by viewing the unavailability of the periodic resource as a deferrable server at highest priority, existing utilization bounds for systems with a deferrable server [3, 11] ...
متن کاملRate monotonic scheduling re-analysed
In this paper, we re-analyse the Rate Monotonic Scheduler. Traditionally, the schedulability condition was obtained from the greatest lower bound of utilisation factors over all the task sets that (are schedulable and) fully utilise the processor. We argue that full utilisation is not very appropriate for this purpose. We reestablish Liu and Layland’s classic schedulability theorem by finding t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Computers
دوره 52 شماره
صفحات -
تاریخ انتشار 2003